A Novel Quorum-Quenching N-Acylhomoserine Lactone Acylase from Acidovorax sp. Strain MR-S7 Mediates Antibiotic Resistance

نویسندگان

  • Hiroyuki Kusada
  • Hideyuki Tamaki
  • Yoichi Kamagata
  • Satoshi Hanada
  • Nobutada Kimura
چکیده

N-Acylhomoserine lactone acylase (AHL acylase) is a well-known enzyme responsible for disrupting cell-cell communication (quorum sensing) in bacteria. Here, we isolated and characterized a novel and unique AHL acylase (designated MacQ) from a multidrug-resistant bacterium, Acidovorax sp. strain MR-S7. The purified MacQ protein heterologously expressed in Escherichia coli degraded a wide variety of AHLs, ranging from C6 to C14 side chains with or without 3-oxo substitutions. We also observed that AHL-mediated virulence factor production in a plant pathogen, Pectobacterium carotovorum, was dramatically attenuated by coculture with MacQ-overexpressing Escherichia coli, whereas E. coli with an empty vector was unable to quench the pathogenicity, which strongly indicates that MacQ can act in vivo as a quorum-quenching enzyme and interfere with the quorum-sensing system in the pathogen. In addition, this enzyme was found to be capable of degrading a wide spectrum of β-lactams (penicillin G, ampicillin, amoxicillin, carbenicillin, cephalexin, and cefadroxil) by deacylation, clearly indicating that MacQ is a bifunctional enzyme that confers both quorum quenching and antibiotic resistance on strain MR-S7. MacQ has relatively low amino acid sequence identity to any of the known acylases (<39%) and has among the broadest substrate range. Our findings provide the possibility that AHL acylase genes can be an alternative source of antibiotic resistance genes posing a threat to human health if they migrate and transfer to pathogenic bacteria.IMPORTANCEN-Acylhomoserine lactones (AHLs) are well-known signal molecules for bacterial cell-cell communication (quorum sensing), and AHL acylase, which is able to degrade AHLs, has been recognized as a major target for quorum-sensing interference (quorum quenching) in pathogens. In this work, we succeeded in isolating a novel AHL acylase (MacQ) from a multidrug-resistant bacterium and demonstrated that the MacQ enzyme could confer multidrug resistance as well as quorum quenching on the host organism. Indeed, the purified MacQ protein was found to be bifunctional and capable of degrading not only various AHL derivatives but also multiple β-lactam antibiotics by deacylation activities. Although quorum quenching and antibiotic resistance have been recognized to be distinct biological functions, our findings clearly link the two functions by discovering the novel bifunctional enzyme and further providing the possibility that a hitherto-overlooked antibiotic resistance mechanism mediated by the quorum-quenching enzyme may exist in natural environments and perhaps in clinical settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome Sequence of the Multiple-β-Lactam-Antibiotic-Resistant Bacterium Acidovorax sp. Strain MR-S7

Acidovorax sp. strain MR-S7 was isolated from activated sludge in a treatment system for wastewater containing β-lactam antibiotic pollutants. Strain MR-S7 demonstrates multidrug resistance for various types of β-lactam antibiotics at high levels of MIC. The draft genome sequence clarified that strain MR-S7 harbors unique β-lactamase genes.

متن کامل

Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015.

N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli exp...

متن کامل

Interference of Quorum Sensing by Delftia sp. VM4 Depends on the Activity of a Novel N-Acylhomoserine Lactone-Acylase

BACKGROUND Turf soil bacterial isolate Delftia sp. VM4 can degrade exogenous N-acyl homoserine lactone (AHL), hence it effectively attenuates the virulence of bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum strain BR1 (Pcc BR1) as a consequence of quorum sensing inhibition. METHODOLOGY/PRINCIPAL FINDINGS Isolated Delftia sp. VM4 can grow in minimal medium supplemente...

متن کامل

Genome sequence of Roseomonas sp. strain B5, a quorum-quenching N-acylhomoserine lactone-degrading bacterium isolated from Malaysian tropical soil.

Roseomonas sp. strain B5 was isolated from Malaysian tropical soil that showed N-acylhomoserine lactone degradation. This is the first genome announcement of a member from the genus of Roseomonas and the first report on the quorum-quenching activity of Roseomonas spp.

متن کامل

Characterization of wetland quorum quenching Pseudomonas aeruginosa strain 2SW8 and its 2-heptyl-3-hydroxy-4-quinolone production.

Most Proteobacteria produce N-acylhomoserine lactones for bacterial cell-to-cell communication, a process called quorum sensing. Interference of quorum sensing, commonly known as quorum quenching, represents an important way to control quorum sensing. This work reports the isolation of quorum quenching bacterium strain 2WS8 from Malaysia tropical wetland water (2°11'8"N, 102°15'2"E, in 2007) by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2017